Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 349: 140933, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38092166

RESUMO

Anaerobic ammonium oxidation, associated with both iron (Feammox) and manganese (Mnammox) reduction, is a microbial nitrogen (N) removal mechanism recently identified in natural ecosystems. Nevertheless, the spatial distributions of these non-canonical Anammox (NC-Anammox) pathways and their environmental drivers in subtidal coastal sediments are still unknown. Here, we determined the potential NC-Anammox rates and abundance of dissimilatory metal-reducing bacteria (Acidomicrobiaceae A6 and Geobacteraceae) at different horizons (0-20 cm at 5 cm intervals) of subtidal coastal sediments using the 15N isotope-tracing technique and molecular analyses. Sediments were collected across three sectors (inlet, transition, and inner) in a coastal lagoon system (Bahia de San Quintin, Mexico) dominated by seagrass meadows. The positive relationship between 30N2 production rates and dissimilatory Fe and Mn reduction provided evidence for Feammox's and Mnammox's co-occurrence. N loss through NC-Anammox was detected in subtidal sediments, with potential rates of 0.07-0.62 µg N g-1 day-1. NC-Anammox process in vegetated sediments tended to be higher than those in adjacent unvegetated ones. NC-Anammox rates showed a subsurface peak (between 5 and 15 cm) in the vegetated sediments but decreased consistently with depth in the adjacent bare bottoms. Thus, the presence/absence of seagrasses and sediment characteristics, particularly the availability of organic carbon and microbiologically reducible Fe(III) and Mn(IV), affected the abundance of dissimilatory metal-reducing bacteria, which mediated NC-Anammox activity and the associated N removal. An annual loss of 32.31 ± 3.57 t N was estimated to be associated with Feammox and Mnammox within the investigated area, accounting for 2.8-4.7% of the gross total import of reactive N from the ocean into the Bahia de San Quintin. Taken as a whole, this study reveals the distribution patterns and controlling factors of the NC-Anammox pathways along a coastal lagoon system. It improves our understanding of the coupling between N and trace metal cycles in coastal environments.


Assuntos
Compostos de Amônio , Compostos Férricos , Compostos Férricos/metabolismo , Ecossistema , Sedimentos Geológicos/microbiologia , Compostos de Amônio/metabolismo , Ciclo do Nitrogênio , Oxirredução , Nitrogênio/metabolismo , Bactérias/metabolismo
2.
PLoS One ; 16(2): e0246082, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33626056

RESUMO

Yellowfin tuna (YFT, Thunnus albacares) is a commercially important species targeted by fisheries in the Gulf of Mexico (GM). Previous studies suggest a high degree of residency in the northern GM, although part of the population performs movements to southern Mexican waters. Whether YFT caught in southern waters also exhibit residency or migrate to the northern gulf is currently uncertain, and little is known regarding their trophic ecology. The isotopic composition (bulk & amino acids) of YFT muscle and liver tissues were compared to a zooplankton-based synoptic isoscape from the entire GM to infer feeding areas and estimate Trophic Position (TP). The spatial distribution of δ15Nbulk and δ15NPhe values of zooplankton indicated two distinct isotopic baselines: one with higher values in the northern GM likely driven by denitrification over the continental shelf, and another in the central-southern gulf, where nitrogen fixation predominates. Based on the contribution of the two regional isotopic baselines to YFT tissues, broad feeding areas were inferred, with a greater contribution of the northern GM (over a one-year time scale by muscle), and to a lesser extent in the central-southern GM (over the ca. 6-month scale by liver). This was corroborated by similarities in δ15NPhe values between YFT and the northern GM. TP estimates were calculated based on stable isotope analysis of bulk (SIA) and compound-specific isotope analysis (CSIA-AA) of the canonical source and trophic amino acids. Mean TP based on SIA was 4.9 ± 1.0 and mean TP based on CSIA-A was 3.9 ± 0.2. YFT caught within the Mexican region seem to feed in northern and in central and southern GM, while feeding in the northern GM has a temporal component. Thus, management strategies need to consider that YFT caught in US and Mexican waters are a shared binational resource that exhibit feeding migrations within the GM.


Assuntos
Ecossistema , Monitoramento Ambiental , Cadeia Alimentar , Atum , Animais , Teorema de Bayes , Golfo do México , Isótopos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...